Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.549
Filtrar
1.
Curr Biol ; 34(8): R308-R312, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38653196

RESUMO

Flowering plants, also known as angiosperms, emerged approximately 150 to 200 million years ago. Since then, they have undergone rapid and extensive expansion, now encompassing around 90% of all land plant species. The remarkable diversification of this group has been a subject of in-depth investigations, and several evolutionary innovations have been proposed to account for their success. In this primer, we will specifically focus on one such innovation: the advent of seeds containing endosperm.


Assuntos
Evolução Biológica , Magnoliopsida , Reprodução , Magnoliopsida/fisiologia , Magnoliopsida/genética , Reprodução/fisiologia , Endosperma/fisiologia , Sementes/fisiologia
2.
BMC Plant Biol ; 24(1): 196, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494545

RESUMO

BACKGROUND: Chalkiness is a common phenotype induced by various reasons, such as abiotic stress or the imbalance of starch synthesis and metabolism during the development period. However, the reason mainly for one gene losing its function such as NAC (TFs has a large family in rice) which may cause premature is rarely known to us. RESULTS: The Ko-Osnac02 mutant demonstrated an obviously early maturation stage compared to the wild type (WT) with 15 days earlier. The result showed that the mature endosperm of Ko-Osnac02 mutant exhibited chalkiness, characterized by white-core and white-belly in mature endosperm. As grain filling rate is a crucial factor in determining the yield and quality of rice (Oryza sativa, ssp. japonica), it's significant that mutant has a lower amylose content (AC) and higher soluble sugar content in the mature endosperm. Interestingly among the top DEGs in the RNA sequencing of N2 (3DAP) and WT seeds revealed that the OsBAM2 (LOC_Os10g32810) expressed significantly high in N2 mutant, which involved in Maltose up-regulated by the starch degradation. As Prediction of Protein interaction showed in the chalky endosperm formation in N2 seeds (3 DAP), seven genes were expressed at a lower-level which should be verified by a heatmap diagrams based on DEGs of N2 versus WT. The Tubulin genes controlling cell cycle are downregulated together with the MCM family genes MCM4 ( ↓), MCM7 ( ↑), which may cause white-core in the early endosperm development. In conclusion, the developing period drastically decreased in the Ko-Osnac02 mutants, which might cause the chalkiness in seeds during the early endosperm development. CONCLUSIONS: The gene OsNAC02 which controls a great genetic co-network for cell cycle regulation in early development, and KO-Osnac02 mutant shows prematurity and white-core in endosperm.


Assuntos
Endosperma , Oryza , Endosperma/metabolismo , Amido/metabolismo , Sementes/genética , Grão Comestível/genética , Homeostase , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Transgenic Res ; 33(1-2): 47-57, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451380

RESUMO

Cellobiohydrolase II (CBH II) is an exo-glucanase that is part of a fungal mixture of enzymes from a wood-rot fungus, Trichoderma reesei. It is therefore difficult to purify and to establish a specific activity assay. The gene for this enzyme, driven by the rice Os glutelin promoter, was transformed into High II tissue culture competent corn, and the enzyme accumulated in the endosperm of the seed. The transgenic line recovered from tissue culture was bred into male and female elite Stine inbred corn lines, stiff stalk 16083-025 (female) and Lancaster MSO411 (male), for future production in their hybrid. The enzyme increases its accumulation throughout its 6 generations of back crosses, 27-266-fold between T1 and T2, and 2-10-fold between T2 and T3 generations with lesser increases in T4-T6. The germplasm of the inbred lines replaces the tissue culture corn variety germplasm with each generation, with the ultimate goal of producing a high-yielding hybrid with the transgene. The CBH II enzyme was purified from T5 inbred male grain 10-fold to homogeneity with 47.5% recovery. The specific activity was determined to be 1.544 units per µg protein. The corn-derived CBH II works in biopolishing of cotton by removing surface fibers to improve dyeability and increasing glucose from corn flour for increasing ethanol yield from starch-based first-generation processes.


Assuntos
Celulase , Trichoderma , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Zea mays/genética , Zea mays/metabolismo , Endosperma/genética , Endosperma/metabolismo , Trichoderma/genética , Trichoderma/metabolismo , Melhoramento Vegetal , Celulase/genética
4.
J Mol Graph Model ; 129: 108761, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38552302

RESUMO

ADP-glucose pyrophosphorylase plays a pivotal role as an allosteric enzyme, essential for starch biosynthesis in plants. The higher plant AGPase comparises of a pair of large and a pair of small subunits to form a heterotetrameric complex. Growing evidence indicates that each subunit plays a distinct role in regulating the underlying mechanism of starch biosynthesis. In the rice genome, there are four large subunit genes (OsL1-L4) and three small subunit genes (OsS1, OsS2a, and OsS2b). While the structural assembly of cytosolic rice AGPase subunits (OsL2:OsS2b) has been elucidated, there is currently no such documented research available for plastidial rice AGPases (OsL1:OsS1). In this study, we employed protein modeling and MD simulation approaches to gain insights into the structural association of plastidial rice AGPase subunits. Our results demonstrate that the heterotetrameric association of OsL1:OsS1 is very similar to that of cytosolic OsL2:OsS2b and potato AGPase heterotetramer (StLS:StSS). Moreover, the yeast-two-hybrid results on OsL1:OsS1, which resemble StLS:StSS, suggest a differential protein assembly for OsL2:OsS2b. Thus, the regulatory and catalytic mechanisms for plastidial AGPases (OsL1:OsS1) could be different in rice culm and developing endosperm compared to those of OsL2:OsS2b, which are predominantly found in rice endosperm.


Assuntos
Oryza , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/metabolismo , Oryza/genética , Endosperma/genética , Endosperma/metabolismo , Simulação por Computador , Amido/metabolismo , Subunidades Proteicas/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(14): e2321612121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38530890

RESUMO

To preserve germination ability, plant seeds must be protected from environmental stresses during the storage period. Here, we demonstrate that autophagy, an intracellular degradation system, maintains seed germination ability in Arabidopsis thaliana. The germination ability of long-term (>5 years) stored dry seeds of autophagy-defective (atg) mutant and wild-type (WT) plants was compared. Long-term stored (old) seeds of atg mutants showed lower germination ability than WT seeds, although short-term stored (new) seeds of atg mutants did not show such a phenotype. After removal of the seed coat and endosperm from old atg mutant seeds, the embryos developed into seedlings. Autophagic flux was maintained in endosperm cells during the storage period, and autophagy defect resulted in the accumulation of oxidized proteins and accelerated endosperm cell death. Consistent with these findings, the transcripts of genes, ENDO-ß-MANNANASE 7 and EXPANSIN 2, which are responsible for degradation/remodeling of the endosperm cell wall during germination, were reduced in old atg mutant seeds. We conclude that autophagy maintains endosperm quality during seed storage by suppressing aging-dependent oxidative damage and cell death, which allows the endosperm to perform optimal functions during germination, i.e., cell wall degradation/remodeling, even after long-term storage.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Endosperma/genética , Germinação/fisiologia , Sementes/genética , Proteínas de Arabidopsis/metabolismo , Autofagia , Regulação da Expressão Gênica de Plantas
6.
BMC Plant Biol ; 24(1): 184, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475704

RESUMO

Using the blueberry cultivar "Powderblue" after pollination, fruits at different developmental stages were collected for study. The transverse and longitudinal diameters, individual fruit weight, and fruit water content were measured during their development. Employing tissue sectioning and microscopy techniques, we systematically studied the morphological features and anatomical structures of the fruits and seeds at various developmental stages, aiming to elucidate the cytological patterns during blueberry fruit development. The results of our study revealed that the "Powderblue" blueberry fruit growth and development followed a double "S" curve. Mature "Powderblue" blueberries were blue-black in color, elliptical in shape, with five locules, an inferior ovary, and an average fruit weight of 1.73 ± 0.17 g, and a moisture content of 78.865 ± 0.9%. Blueberry fruit flesh cells were densely arranged with no apparent intercellular spaces, and mesocarp cells accounted for 52.06 ± 7.4% of fruit cells. In the early fruit development stages, the fruit flesh cells were rapidly dividing, significantly increasing in number but without greatly affecting the fruit's morphological characteristics. During the later stages of fruit development, the expansion of the fruit flesh cells became prominent, resulting in a noticeable increase in the fruit's dimensions. Except for the epidermal cells, cells in all fruit tissues showed varying degrees of rupture as fruit development progressed, with the extent of cell rupture increasing, becoming increasingly apparent as the fruit gradually softened. Additionally, numerous brachysclereids (stone cells) appeared in the fruit flesh cells. Stone cells are mostly present individually in the fruit flesh tissue, while in the placental tissue, they often group together. The "Powderblue" blueberry seeds were light brown, 4.13 ± 0.42 mm long, 2.2 ± 0.14 mm wide, with each fruit containing 50-60 seeds. The "Powderblue" seeds mainly consisted of the seed coat, endosperm, and embryo. The embryo was located at the chalazal end in the center of the endosperm and was spatially separated. The endosperm, occupying the vast majority of the seed volume, comprised both the chalazal and outer endosperm, and the endosperm developed and matured before the embryo. As the seed developed, the seed coat was gradually lignified and consisted of palisade-like stone cells externally and epidermal layer cells internally.


Assuntos
Mirtilos Azuis (Planta) , Frutas , Gravidez , Feminino , Humanos , Mirtilos Azuis (Planta)/química , Placenta , Sementes , Endosperma
7.
Mol Genet Genomics ; 299(1): 17, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416243

RESUMO

Barley ranks fourth in global cereal production and is primarily grown for animal feed and malt. Hordeins, the principal barley seed storage proteins, are homologous to wheat gluten and when ingested elicit an immune response in people with Coeliac disease. Risø 1508 is a chemically induced barley mutant with low hordein levels imparted by the lys3.a locus that is reported to be caused by an SNP in the barley prolamin-box binding factor gene (BPBF). Reports suggest the lys3.a locus prevents CG DNA demethylation at the Hor2 (B-hordein) promoter during grain development subsequently causing hypermethylation and inhibiting gene expression. In lys3.a mutants, endosperm-specific ß-amylase (Bmy1) and Hor2 are similarly downregulated during grain development and thus we hypothesize that the inability to demethylate the Bmy1 promoter CG islands is also causing Bmy1 downregulation. We use whole-genome bisulfite sequencing and mRNA-seq on developing endosperms from two lys3.a mutants and a lys3.b mutant to determine all downstream genes affected by lys3 mutations. RNAseq analysis identified 306 differentially expressed genes (DEGs) shared between all mutants and their parents and 185 DEGs shared between both lys3.a mutants and their parents. Global DNA methylation levels and promoter CG DNA methylation levels were not significantly different between the mutants and their parents and thus refute the hypothesis that the lys3.a mutant's phenotype is caused by dysregulation of demethylation during grain development. The majority of DEGs were downregulated (e.g., B- and C-hordeins and Bmy1), but some DEGs were upregulated (e.g., ß-glucosidase, D-hordein) suggesting compensatory effects and potentially explaining the low ß-glucan phenotype observed in lys3.a germplasm. These findings have implications on human health and provide novel insight to barley breeders regarding the use of BPBF transcription factor mutants to create gluten-free barley varieties.


Assuntos
Hordeum , Fatores de Transcrição , Animais , Humanos , Prolaminas , Hordeum/genética , Endosperma/genética , Grão Comestível/genética , Metilação de DNA/genética , Glutens
8.
Methods Mol Biol ; 2772: 249-260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411819

RESUMO

The cereal endosperm is a complex structure comprising distinct cell types, characterized by specialized organelles for the accumulation of storage proteins. Protein trafficking in these cells is complicated by the presence of several different storage organelles including protein bodies (PBs) derived from the endoplasmic reticulum (ER) and dynamic protein storage vacuoles (PSVs). In addition, trafficking may follow a number of different routes depending on developmental stage, showing that the endomembrane system is capable of massive reorganization. Thus, developmental sequences involve progressive changes of the endomembrane system of endosperm tissue and are characterized by a high structural plasticity and endosomal activity.Given the technical dexterity required to access endosperm tissue and study subcellular structures and SSP trafficking in cereal seeds, static images are the state of the art providing a bulk of information concerning the cellular composition of seed tissue. In view of the highly dynamic endomembrane system in cereal endosperm cells, it is reasonable to expect that live cell imaging will help to characterize the spatial and temporal changes of the endomembrane system. The high resolution achieved with electron microscopy perfectly complements the live cell imaging.We therefore established an imaging platform for TEM as well as for live cell imaging. Here, we describe the preparation of different cereal seed tissues for live cell imaging concomitant with immunolocalization studies and ultrastructure.


Assuntos
Grão Comestível , Endosperma , Retículo Endoplasmático , Sementes , Diagnóstico por Imagem
9.
Int J Biol Macromol ; 261(Pt 2): 129948, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311140

RESUMO

In present study, we characterized the formation, interfacial rheology, and storage stability of emulsions stabilized by microendosperm maize-derived zein (M-Zein)/whey protein isolate fiber (WPIF) nanoparticles. Microendosperm maize is a newly developed, oleic acid-rich oilseed resource. Recent research has shown that M-Zein possesses unique hydrophobic properties. Combining it with WPIF may enhance its performance as a stabilizer. Optimization of weight ratios for M-Zein/WPIF composites, guided by particle size analysis, fluorescence spectroscopy, three-phase contact angle (θ), and interfacial rheological analysis, revealed that a 4: 6 mass ratio at pH 7 yielded favorable wettability (θ = 91.2°). Interfacial rheology analysis showed that the combination of WPIF reduced M-Zein's interfacial tension to 7.2 mN/m and 36.7 mN/m at oil-water and air-water interfaces, respectively. The M-Zein/WPIF complex exhibited an elastic protein layer at the oil-water interface. Further investigations into nanoparticle concentration, oil phase volume, and pH revealed that emulsions containing 3 % nanoparticles (w/w), 50 % oil phase volume, and pH 7 showed the best storage stability. This research highlights the development of M-Zein/WPIF composited nanoparticles with superior storage stability and interfacial rheology. Additionally, it introduces a novel application for M-Zein, which elevates the value proposition of microendosperm maize.


Assuntos
Nanopartículas , Zeína , Emulsões/química , Zeína/química , Zea mays , Proteínas do Soro do Leite , Endosperma , Tamanho da Partícula , Reologia , Água/química , Nanopartículas/química
10.
Biosci Biotechnol Biochem ; 88(4): 412-419, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412471

RESUMO

The regeneration of shoots from endosperm tissue is a highly effective method to obtain triploid plants. In this study, we elucidated the establishment of an in vitro regeneration system from endosperm culture for the production of Passiflora edulis "Mantianxing." The highest callus induction rate (83.33%) was obtained on the media supplemented with 1.0 mg/L TDZ. Meanwhile, the MS medium containing 1.0 mg/L 6-BA and 0.4 mg/L IBA gave the optimum 75% shoot bud induction. Chromosome analysis revealed that the chromosomal count of P. edulis "Mantianxing" regenerated from endosperm tissues was 27 (2n = 3x = 27), which indicated that shoots regenerated from endosperm tissues were triploids. Triploid P. edulis had more drought resistance than diploid plants. Our study provided a method for breeding of passion fruit by means of a stable and reproducible regeneration system from endosperm culture, leading to the generation of triploid plants.


Assuntos
Passiflora , Triploidia , Brotos de Planta , Endosperma , Melhoramento Vegetal , Regeneração/genética
11.
BMC Genom Data ; 25(1): 14, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38321382

RESUMO

OBJECTIVE: Sorghum (Sorghum bicolor (L.) Moench) is the fifth most important grain produced in the world. Interest for cultivating sorghum is increasing all over the world in the context of climate change, due to its low input and water requirements. Like other cultivated cereals, sorghum has significant nutritional value thanks to its protein, carbohydrate and dietary fiber content, these latter mainly consisting of cell wall polysaccharides. This work describes for the first time a transcriptomic analysis dedicated to identify the genes involved in the biosynthesis and remodelling of cell walls both in the endosperm and outer layers of sorghum grain during its development. Further analysis of these transcriptomic data will improve our understanding of cell wall assembly, which is a key component of grain quality. DATA DESCRIPTION: This research delineates the steps of our analysis, starting with the cultivation conditions and the grain harvest at different stages of development, followed by the laser microdissection applied to separate the endosperm from the outer layers. It also describes the procedures implemented to generate RNA libraries and to obtain a normalized and filtered table of transcript counts, and finally determine the number of putative cell wall-related genes already listed in literature.


Assuntos
Grão Comestível , Sorghum , Grão Comestível/genética , Grão Comestível/metabolismo , Sorghum/genética , Sorghum/metabolismo , Endosperma/metabolismo , Perfilação da Expressão Gênica , Parede Celular/metabolismo
12.
Science ; 383(6683): 646-653, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38330116

RESUMO

In multicellular organisms, sexual reproduction relies on the formation of highly differentiated cells, the gametes, which await fertilization in a quiescent state. Upon fertilization, the cell cycle resumes. Successful development requires that male and female gametes are in the same phase of the cell cycle. The molecular mechanisms that reinstate cell division in a fertilization-dependent manner are poorly understood in both animals and plants. Using Arabidopsis, we show that a sperm-derived signal induces the proliferation of a female gamete, the central cell, precisely upon fertilization. The central cell is arrested in S phase by the activity of the RETINOBLASTOMA RELATED1 (RBR1) protein. Upon fertilization, delivery of the core cell cycle component CYCD7;1 causes RBR1 degradation and thus S phase progression, ensuring the formation of functional endosperm and, consequently, viable seeds.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Endosperma , Gametogênese Vegetal , Herança Paterna , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Endosperma/citologia , Endosperma/fisiologia
13.
Food Chem ; 444: 138597, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38310783

RESUMO

Polar lipids have biosynthetic pathways which intersect and overlap with triacylglycerol biosynthesis; however, polar lipids have not been well characterized in the developing endosperms of oat with high oil accumulation. The polar lipids in endosperms of oat and wheat varieties having different oil contents were analyzed and compared at different developmental stages. Our study shows that the relative contents of polar lipid by mass were decreased more slowly in wheat than in oat. Phosphatidylcholine and phosphatidylethanolamine were the major phospholipids, which showed similar abundance and gradual decreases during endosperm development in oat and wheat, while lysophospholipids were noticeably higher in oat. Monogalactosyldiacylglycerol showed a gradual increase in wheat and a decrease in oat during endosperm development. The relative contents of some polar lipid species and their unsaturation index were significantly different in their endosperms. These characteristics of polar lipids might indicate an adaption of oat to accommodate oil accumulation.


Assuntos
Avena , Endosperma , Endosperma/metabolismo , Avena/metabolismo , Triticum , Lipidômica , Fosfatidilcolinas/metabolismo
14.
Plant Physiol ; 194(4): 2434-2448, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38214208

RESUMO

Cereal endosperm represents the most important source of the world's food. Nevertheless, the molecular mechanisms behind sugar import into rice (Oryza sativa) endosperm and their relationship with auxin signaling are poorly understood. Here, we report that auxin transport inhibitor response 1 (TIR1) plays an essential role in rice grain yield and quality via modulating sugar transport into endosperm. The fluctuations of OsTIR1 transcripts parallel to the early stage of grain expansion among those of the 5 TIR1/AFB (auxin-signaling F-box) auxin co-receptor proteins. OsTIR1 is abundantly expressed in ovular vascular trace, nucellar projection, nucellar epidermis, aleurone layer cells, and endosperm, providing a potential path for sugar into the endosperm. Compared to wild-type (WT) plants, starch accumulation is repressed by mutation of OsTIR1 and improved by overexpression of the gene, ultimately leading to reduced grain yield and quality in tir1 mutants but improvement in overexpression lines. Of the rice AUXIN RESPONSE FACTOR (ARF) genes, only the OsARF25 transcript is repressed in tir1 mutants and enhanced by overexpression of OsTIR1; its highest transcript is recorded at 10 d after fertilization, consistent with OsTIR1 expression. Also, OsARF25 can bind the promoter of the sugar transporter OsSWEET11 (SWEET, sugars will eventually be exported transporter) in vivo and in vitro. arf25 and arf25/sweet11 mutants exhibit reduced starch content and seed size (relative to the WTs), similar to tir1 mutants. Our data reveal that OsTIR1 mediates sugar import into endosperm via the auxin signaling component OsARF25 interacting with sugar transporter OsSWEET11. The results of this study are of great significance to further clarify the regulatory mechanism of auxin signaling on grain development in rice.


Assuntos
Oryza , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sementes/genética , Endosperma/metabolismo , Grão Comestível/metabolismo , Amido/metabolismo , Ácidos Indolacéticos/metabolismo , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Nat Commun ; 15(1): 34, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167709

RESUMO

The persistent cereal endosperm constitutes the majority of the grain volume. Dissecting the gene regulatory network underlying cereal endosperm development will facilitate yield and quality improvement of cereal crops. Here, we use single-cell transcriptomics to analyze the developing maize (Zea mays) endosperm during cell differentiation. After obtaining transcriptomic data from 17,022 single cells, we identify 12 cell clusters corresponding to five endosperm cell types and revealing complex transcriptional heterogeneity. We delineate the temporal gene-expression pattern from 6 to 7 days after pollination. We profile the genomic DNA-binding sites of 161 transcription factors differentially expressed between cell clusters and constructed a gene regulatory network by combining the single-cell transcriptomic data with the direct DNA-binding profiles, identifying 181 regulons containing genes encoding transcription factors along with their high-confidence targets, Furthermore, we map the regulons to endosperm cell clusters, identify cell-cluster-specific essential regulators, and experimentally validated three predicted key regulators. This study provides a framework for understanding cereal endosperm development and function at single-cell resolution.


Assuntos
Endosperma , Zea mays , Zea mays/metabolismo , Redes Reguladoras de Genes , Diferenciação Celular/genética , Grão Comestível/genética , Grão Comestível/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Int J Biol Macromol ; 260(Pt 1): 129271, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199557

RESUMO

The cell walls of wheat endosperm, which play a pivotal role in seed germination, exhibit a laminated structure primarily composed of polysaccharides. In this study, composite multilayer films were prepared using arabinoxylan (AX), (1,3;1,4)-ß-D-glucan (MLG), and cellulose nanofibers (CNFs), and the effect of polymer blend structure on cell wall hydration and mechanical properties was investigated. Atomic force microscopy and X-ray diffraction indicated that the network structure of MLG/CNF exhibits a higher degree of continuity and uniformity compared to that of AX/CNF. Mechanically, the extensive linkages between MLG and CNFs chains enhance the mechanical properties of the films. Moreover, water diffusion experiments and TD-NMR analysis revealed that water molecules diffuse faster in the network structure formed by AX. We propose a structural model of the endosperm cell wall, in which the CNFs polymer blend coated with MLG serves as the framework, and the AX network fills the gaps between them, providing diffusion channels for water molecules.


Assuntos
Celulose , Xilanos , beta-Glucanas , Celulose/química , beta-Glucanas/química , Endosperma , Triticum/química , Parede Celular/química , Água/química
17.
J Agric Food Chem ; 72(2): 1146-1161, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181192

RESUMO

Tocotrienols and tocopherols (vitamin E) are potent antioxidants that are synthesized in green plants. Unlike ubiquitous tocopherols, tocotrienols predominantly accumulate in the endosperm of monocot grains, catalyzed by homogentiate geranylgeranyl transferase (HGGT). Previously, we generated a tocotrienol-deficient hvhggt mutant with shrunken barley grains. However, the relationship between tocotrienols and grain development remains unclear. Here, we found that the hvhggt lines displayed hollow endosperms with defective transfer cells and reduced aleurone layers. The carbohydrate and starch contents of the hvhggt endosperm decreased by approximately 20 and 23%, respectively. Weighted gene coexpression network analyses identified a critical gene module containing HvHGGT, which was strongly associated with the hvhggt mutation and enriched with gene functions in starch and sucrose metabolism. Metabolome measurements revealed an elevated soluble sugar content in the hvhggt endosperm, which was significantly associated with the identified gene modules. The hvhggt endosperm had significantly higher NAD(H) and NADP(H) contents and lower levels of ADPGlc (regulated by redox balance) than the wild-type, consistent with the absence of tocotrienols. Interestingly, exogenous α-tocotrienol spraying on developing hvhggt spikes partially rescued starch accumulation and endosperm defects. Our study supports a potential novel function of tocotrienols in grain starch accumulation and endosperm development in monocot crops.


Assuntos
Hordeum , Tocotrienóis , Tocotrienóis/metabolismo , Endosperma/química , Amido/metabolismo , Transcriptoma , Tocoferóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metaboloma
18.
J Sci Food Agric ; 104(3): 1824-1832, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37884460

RESUMO

BACKGROUND: Rice taste is closely associated with endosperm composition, which varies among different rice layers. Although clarifying the relationship between this difference and nutritional taste can guide rice breeding and cultivation practices, research on this topic is limited. RESULTS: Here, typical rice varieties having excellent and poor taste characteristics were selected to analyze the distribution characteristics and differences of their components. The varieties with excellent taste exhibited lower apparent amylose content (AAC) and protein content (PC), lesser short-chain (Fa) and long-chain (Fb3 ) amylopectin (AP) and more medium-chain (Fb1+2 ) AP, higher long-to-short chain ratio (Fa:Fb3 ), and higher nitrogen (N), magnesium (Mg) and calcium (Ca) content in layer 1 (L1) than the varieties with poor taste. Layer 2 (L2) played a key role in AAC and PC regulation in the varieties with excellent taste by reducing AAC and appropriately increasing PC, consequently improving rice taste. AP structure in layer 3 (L3) substantially affected the taste of the two types of varieties. The mineral content was the highest in L1, and increased potassium (K), Ca, and Mg content improved taste in all varieties. CONCLUSION: AAC in each layer contributes to rice taste. PC and minerals primarily act on L1 and L2, whereas AP acts on L2 and L3. Therefore, the endosperm formation process should be exploited for improving rice taste. Furthermore, key resources and cultivation should be identified and regulated, respectively, to improve rice taste. © 2023 Society of Chemical Industry.


Assuntos
Oryza , Oryza/química , Paladar , Melhoramento Vegetal , Amilopectina/química , Endosperma/química , Amilose/análise , Minerais/análise , Magnésio/análise , Amido/química
19.
Plant Biotechnol J ; 22(3): 555-571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050335

RESUMO

The nutritional value of wheat grains, particularly their protein and metabolite composition, is a result of the grain-filling process, especially in the endosperm. Here, we employ laser microdissection (LMD) combined with shotgun proteomics and metabolomics to generate a cell type-specific proteome and metabolome inventory of developing wheat endosperm at the early (15 DAA) and late (26 DAA) grain-filling stages. We identified 1803 proteins and 41 metabolites from four different cell types (aleurone (AL), sub-aleurone (SA), starchy endosperm (SE) and endosperm transfer cells (ETCs). Differentially expressed proteins were detected, 67 in the AL, 31 in the SA, 27 in the SE and 50 in the ETCs between these two-time points. Cell-type accumulation of specific SUT and GLUT transporters, sucrose converting and starch biosynthesis enzymes correlate well with the respective sugar metabolites, suggesting sugar upload and starch accumulation via nucellar projection and ETC at 15 DAA in contrast to the later stage at 26 DAA. Changes in various protein levels between AL, SA and ETC support this metabolic switch from 15 to 26 DAA. The distinct spatial and temporal abundances of proteins and metabolites revealed a contrasting activity of nitrogen assimilation pathways, e.g. for GOGAT, GDH and glutamic acid, in the different cell types from 15 to 26 DAA, which can be correlated with specific protein accumulation in the endosperm. The integration of cell-type specific proteome and metabolome data revealed a complex metabolic interplay of the different cell types and a functional switch during grain development and grain-filling processes.


Assuntos
Endosperma , Triticum , Endosperma/metabolismo , Triticum/metabolismo , Proteoma/metabolismo , Proteômica , Antivirais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível , Amido/metabolismo , Açúcares/metabolismo
20.
Plant J ; 117(5): 1574-1591, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37970738

RESUMO

As a maternal tissue, the pericarp supports and protects for other components of seed, such as embryo and endosperm. Despite the importance of maize pericarp in seed, the genome-wide transcriptome pattern throughout maize pericarp development has not been well characterized. Here, we developed RNA-seq transcriptome atlas of B73 maize pericarp development based on 21 samples from 5 days before fertilization (DBP5) to 32 days after fertilization (DAP32). A total of 25 346 genes were detected in programming pericarp development, including 1887 transcription factors (TFs). Together with pericarp morphological changes, the global clustering of gene expression revealed four developmental stages: undeveloped, thickening, expansion and strengthening. Coexpression analysis provided further insights on key regulators in functional transition of four developmental stages. Combined with non-seed, embryo, endosperm, and nucellus transcriptome data, we identified 598 pericarp-specific genes, including 75 TFs, which could elucidate key mechanisms and regulatory networks of pericarp development. Cell wall related genes were identified that reflected their crucial role in the maize pericarp structure building. In addition, key maternal proteases or TFs related with programmed cell death (PCD) were proposed, suggesting PCD in the maize pericarp was mediated by vacuolar processing enzymes (VPE), and jasmonic acid (JA) and ethylene-related pathways. The dynamic transcriptome atlas provides a valuable resource for unraveling the genetic control of maize pericarp development.


Assuntos
Transcriptoma , Zea mays , Transcriptoma/genética , Zea mays/metabolismo , Endosperma/metabolismo , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...